Reconfigurable nanomechanical photonic metamaterials (2024)

References

  1. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

    Article CAS Google Scholar

  2. Zheludev, N. I. Obtaining optical properties on demand. Science 348, 973–974 (2015).

    Article CAS Google Scholar

  3. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article Google Scholar

  4. Thijssen, R., Verhagen, E., Kippenberg, T. J. & Polman, A. Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 13, 3293–3297 (2013).

    Article CAS Google Scholar

  5. Thijssen, R., Kippenberg, T. J., Polman, A. & Verhagen, E. Parallel transduction of nanomechanical motion using plasmonic resonators. ACS Photon. 1, 1181–1188 (2014).

    Article CAS Google Scholar

  6. Thijssen, R., Kippenberg, T. J., Polman, A. & Verhagen, E. Plasmomechanical resonators based on dimer nanoantennas. Nano Lett. 15, 3971–3976 (2015).

    Article CAS Google Scholar

  7. Dicken, M. J. et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 17, 18330–18339 (2009).

    Article CAS Google Scholar

  8. Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    Article CAS Google Scholar

  9. Sámson, Z. L. et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010).

    Article Google Scholar

  10. Werner, D. H., Kwon, D.-H., Khoo, I.-C., Kildishev, A. V. & Shalaev, V. M. Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. Opt. Express 15, 3342–3347 (2007).

    Article Google Scholar

  11. Zhao, Q. et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl. Phys. Lett. 90, 011112 (2007).

    Article Google Scholar

  12. Minovich, A. et al. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012).

    Article Google Scholar

  13. Buchnev, O., Ou, J. Y., Kaczmarek, M., Zheludev, N. I. & Fedotov, V. A. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt. Express 21, 1633–1638 (2013).

    Article CAS Google Scholar

  14. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

    Article Google Scholar

  15. Fang, X. et al. Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl. Phys. Lett. 104, 141102 (2014).

    Article Google Scholar

  16. Mousavi, S. A., Plum, E., Shi, J. & Zheludev, N. I. Coherent control of birefringence and optical activity. Appl. Phys. Lett. 105, 011906 (2014).

    Article Google Scholar

  17. Shi, J. et al. Coherent control of Snell's law at metasurfaces. Opt. Express 22, 21051–21060 (2014).

    Article Google Scholar

  18. Fang, X., MacDonald, K. F. & Zheludev, N. I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci. Appl. 4, e292 (2015).

    Article Google Scholar

  19. Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nature Commun. 6, 7031 (2015).

    Article Google Scholar

  20. Lapine, M. et al. Structural tunability in metamaterials. Appl. Phys. Lett. 95, 084105 (2009). This paper reports the first mechanically reconfigurable microwave metamaterial.

    Article Google Scholar

  21. Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009). This paper reports the first mechanically reconfigurable terahertz metamaterial.

    Article Google Scholar

  22. Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett. 10, 4222–4227 (2010). This paper reports the first mechanically reconfigurable optical metamaterial.

    Article CAS Google Scholar

  23. Aksu, S. et al. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 23, 4422–4430 (2011).

    Article CAS Google Scholar

  24. Cui, Y., Zhou, J., Tamma, V. A. & Park, P. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano 6, 2385–2393 (2012).

    Article CAS Google Scholar

  25. Lee, S. et al. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts. Adv. Mater. 24, 3491–3497 (2012).

    Article CAS Google Scholar

  26. Walia, S. et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015).

    Article Google Scholar

  27. Chicherin, D. et al. MEMS-based high-impedance surfaces for millimeter and submillimeter wave applications. Microw. Opt. Technol. Lett. 48, 2570–2573 (2006).

    Article Google Scholar

  28. Hand, T. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antenn. Wireless Propag. Lett. 6, 401–404 (2007).

    Article Google Scholar

  29. Fu, Y. H. et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv. Funct. Mater. 21, 3589–3594 (2011).

    Article CAS Google Scholar

  30. He, X., Lv, Z., Liu, B. & Li, Z. Tunable magnetic metamaterial based multi-split-ring resonator (MSRR) using MEMS switch components. Microsys. Technol. 17, 1263–1269 (2011).

    Article Google Scholar

  31. Zhu, W. M. et al. Switchable magnetic metamaterials using micromachining processes. Adv. Mater. 23, 1792–1796 (2011).

    Article CAS Google Scholar

  32. Zhang, W. et al. Micromachined switchable metamaterial with dual resonance. Appl. Phys. Lett. 101, 151902 (2012).

    Article Google Scholar

  33. Zhu, W. M. et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nature Commun. 3, 1274 (2012).

    Article CAS Google Scholar

  34. Ho, C. P. et al. Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics. Appl. Phys. Lett. 104, 161104 (2014).

    Article Google Scholar

  35. Lin, Y.-S. & Lee, C. Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers. Appl. Phys. Lett. 104, 251914 (2014).

    Article Google Scholar

  36. Pitchappa, P. et al. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber. Appl. Phys. Lett. 104, 201114 (2014).

    Article Google Scholar

  37. Liu, A. Q., Zhu, W. M., Tsai, D. P. & Zheludev, N. I. Micromachined tunable metamaterials: a review. J. Opt. 14, 114009 (2012).

    Article Google Scholar

  38. Kasirga, T. S., Ertas, Y. N. & Bayindir, M. Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett. 95, 214102 (2009).

    Article Google Scholar

  39. Zhu, W. M. et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater. 27, 4739–4743 (2015). This paper presents the first randomly addressable reconfigurable microwave metamaterial.

    Article CAS Google Scholar

  40. Ozbey, B. & Aktas, O. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express 19, 5741–5752 (2011).

    Article CAS Google Scholar

  41. Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Magnetoelastic metamaterials. Nature Mater. 11, 30–33 (2012). This paper reports the first microwave metamaterial that is actuated by electromagnetic forces.

    Article CAS Google Scholar

  42. Chen, H. T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article CAS Google Scholar

  43. Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, M. & Averitt, R. D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006).

    Article CAS Google Scholar

  44. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article CAS Google Scholar

  45. Lee, S. H. et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater. 11, 936–941 (2012).

    Article CAS Google Scholar

  46. Ricci, M., Orloff, N. & Anlage, S. M. Superconducting metamaterials. Appl. Phys. Lett. 87, 034102 (2005).

    Article Google Scholar

  47. Savinov, V., Fedotov, V. A., Anlage, S. M., de Groot, P. A. J. & Zheludev, N. I. Modulating sub-THz radiation with current in superconducting metamaterial. Phys. Rev. Lett. 109, 243904 (2012).

    Article CAS Google Scholar

  48. Boardman, A. D. et al. Active and tunable metamaterials. Laser Photon. Rev. 5, 287–307 (2011).

    Article CAS Google Scholar

  49. Keiser, G. R., Fan, K., Zhang, X. & Averitt, R. D. Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review. J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).

    Article CAS Google Scholar

  50. Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014).

    Article CAS Google Scholar

  51. Shadrivov, I., Lapine, M. & Kivshar, Y. S. (eds) Nonlinear, Tunable and Active Metamaterials (Springer, 2014).

    Google Scholar

  52. Turpin, J. P., Bossard, J. A., Morgan, K. L., Werner, D. H. & Werner, P. L. Reconfigurable and tunable metamaterials: a review of the theory and applications. Int. J. Antenn. Propag. 2014, 1–18 (2014).

    Article Google Scholar

  53. Fan, K. & Padilla, W. J. Dynamic electromagnetic metamaterials. Mater. Today 18, 39–50 (January–February, 2015).

    Article CAS Google Scholar

  54. Toivola, Y., Thurn, J., Cook, R. F., Cibuzar, G. & Roberts, K. Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films. J. Appl. Phys. 94, 6915–6922 (2003).

    Article CAS Google Scholar

  55. Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

    Article Google Scholar

  56. Petersen, K. E. Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982).

    Article CAS Google Scholar

  57. Fairchild, B. A. et al. Fabrication of ultrathin single-crystal diamond membranes. Adv. Mater. 20, 4793–4798 (2008).

    Article CAS Google Scholar

  58. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    Article CAS Google Scholar

  59. Lagally, M. G. et al. Semiconductor nanomembranes: a platform for new science and technology. Proc. SPIE 8031, 803107 (2011).

    Article Google Scholar

  60. Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable photonic metamaterials. Nano Lett. 11, 2142–2144 (2011). This paper reports the first thermally actuated optical nanomembrane metamaterial.

    Article CAS Google Scholar

  61. Ou, J. Y., Plum, E., Zhang, J. & Zheludev, N. I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotech. 8, 252–255 (2013). This paper reports the first electrostatically actuated optical nanomembrane metamaterial.

    Article CAS Google Scholar

  62. Valente, J., Ou, J. Y., Plum, E., Youngs, I. J. & Zheludev, N. I. Reconfiguring photonic metamaterials with currents and magnetic fields. Appl. Phys. Lett. 106, 111905 (2015).

    Article Google Scholar

  63. Valente, J., Ou, J. Y., Plum, E., Youngs, I. J. & Zheludev, N. I. A magneto-electro-optical effect in a plasmonic nanowire material. Nature Commun. 6, 7021 (2015). This paper reports the first magnetically actuated optical nanomembrane metamaterial.

    Article CAS Google Scholar

  64. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Nonlinear dielectric optomechanical metamaterials. Light Sci. Appl. 2, e96 (2013). This theoretical paper predicts giant nonlinear optical effects in nanomembrane metamaterials actuated by optical forces.

    Article Google Scholar

  65. Ou, J. Y., Plum, E., Zhang, J. & Zheludev, N. I. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater. http://dx.doi.org/10.1002/adma.201504467 (2015). This paper reports the first optically actuated nano-optomechanical metamaterial operating in the optical part of the spectrum.

  66. Chen, C. C. et al. Fabrication of three dimensional split ring resonators by stress-driven assembly method. Opt. Express 20, 9415–9420 (2012).

    Article Google Scholar

  67. Yamaguchi, K., Fujii, M., Okamoto, T. & Haraguchi, M. Electrically driven plasmon chip: active plasmon filter. Appl. Phys. Express 7, 012201 (2014).

    Article Google Scholar

  68. Zhao, R., Tassin, P., Koschny, T. & Soukoulis, C. M. Optical forces in nanowire pairs and metamaterials. Opt. Express 18, 25665–25676 (2010).

    Article CAS Google Scholar

  69. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Optical gecko toe: optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. Phys. Rev. B 85, 205123 (2012).

    Article Google Scholar

  70. Slobozhanyuk, A. P. et al. Flexible helices for nonlinear metamaterials. Adv. Mater. 25, 3409–3412 (2013).

    Article CAS Google Scholar

  71. Ginis, V., Tassin, P., Soukoulis, C. M. & Veretennicoff, I. Enhancing optical gradient forces with metamaterials. Phys. Rev. Lett. 110, 057401 (2013).

    Article Google Scholar

  72. Karvounis, A., Ou, J. Y., Wu, W., MacDonald, K. F. & Zheludev, N. I. Nano-optomechanical nonlinear dielectric metamaterials. Appl. Phys. Lett. 107, 191110 (2015). This paper reports the first dielectric nano-optomechanical metamaterial.

    Article Google Scholar

  73. Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

    Google Scholar

  74. Semouchkina, E. A., Semouchkin, G. B., Lanagan, M. & Randall, C. A. FDTD study of resonance processes in metamaterials. IEEE Trans. Microw. Theory Tech. 53, 1477–1487 (2005).

    Article Google Scholar

  75. Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Article Google Scholar

  76. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express 21, 26721–26728 (2013).

    Article Google Scholar

  77. Chong, K. E. et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

    Article CAS Google Scholar

  78. Wang, Q. et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. Appl. Phys. Lett. 104, 121105 (2014).

    Article Google Scholar

  79. Wang, Q. et al. Optically switchable and rewritable phase-change (dielectric) metamaterials. In 2015 MRS Spring Meeting, San Francisco (2015); http://eprints.soton.ac.uk/379172

  80. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Giant optical forces in planar dielectric photonic metamaterials. Opt. Lett. 39, 4883–4886 (2014).

    Article Google Scholar

  81. Cencillo-Abad, P., Ou, J. Y., Valente, J., Plum, E. & Zheludev, N. I. Randomly addressable reconfigurable photonic metamaterials. In 5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld (2015); http://eprints.soton.ac.uk/375824This conference paper presents the first randomly addressable reconfigurable nanomembrane metamaterial.

    Google Scholar

  82. Rigden, J. S. Macmillan Encyclopedia of Physics (Simon and Schuster Macmillan, 1996).

    Google Scholar

  83. Karim, S., Maaz, K., Ali, G. & Ensinger, W. Diameter dependent failure current density of gold nanowires. J. Phys. D 42, 185403 (2009).

    Article Google Scholar

Download references

Reconfigurable nanomechanical photonic metamaterials (2024)
Top Articles
Latest Posts
Article information

Author: Ms. Lucile Johns

Last Updated:

Views: 5601

Rating: 4 / 5 (61 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Ms. Lucile Johns

Birthday: 1999-11-16

Address: Suite 237 56046 Walsh Coves, West Enid, VT 46557

Phone: +59115435987187

Job: Education Supervisor

Hobby: Genealogy, Stone skipping, Skydiving, Nordic skating, Couponing, Coloring, Gardening

Introduction: My name is Ms. Lucile Johns, I am a successful, friendly, friendly, homely, adventurous, handsome, delightful person who loves writing and wants to share my knowledge and understanding with you.